Compiler Support for the Fortran 2008 and 2018 Standards:
Version 1

Ian D Chivers & Jane Sleightholme
Ian Chivers: Rhymney Consulting, London.
Jane Sleightholme: Fortranplus, London.
ian@rhymneyconsulting.co.uk
jane@fortranplus.co.uk

3 Introduction

This document looks at compiler support for the most recent Fortran standards. It is a successor to a previous document
that looked at support for earlier standards. As most actively developed compilers now fully support the Fortran 2003
standard (with some minor exceptions) our starting point is the Fortran 2008 standard.

3.1 Fortran 2008 support

Here is the Fortran 2008 compliance table. The original table was based on John Reid's paper
* NI1828 - The new features of Fortran 2008 (Reid)

which was published in 2010. This was superseded by
* NI1891 The new features of Fortran 2008 (Reid)

which was published in 2011.

Additional features were taken from Annex C of the Fortran 2018 standard.

Van Snyder raised the issue of
¢ Interpretation F18/012 which was passed as paper 19-179.

He suggested that the feature could be listed as "Internal specific for generic." We have added this to the Fortran 2008
table. The references section has more details about these documents.

We have split the table in two to ease typesetting. The first table has a description of the feature. We have added an
artificial feature number to make linking the tables easier. The column labelled "2008 number" refers to the numbering
scheme in John Reid's papers. The column labelled "2018 number" refers to the numbering in Annex C of the Fortran
2018 standard. The second table summarises implementation status.

Ezf;;?r Fortran 2008 Features rzlgrlfber Izlg?fber

1 Submodules 2

2 Coarrays 3
Performance enhancements 4

3 do concurrent 4.1

4 Contiguous attribute 4.2
Data Declaration 5

5 Maximum rank + corank <=15 5.1

ACM Fortran Forum, April 2020, 39, 1 8

Eﬁf;l;l; Fortran 2008 Features rzu(irlfber rzlg?fber

6 Long integers (18 digit or 64 bit) 52

7 Allocatable components of recursive type 5.3

8 Implied-shape arrays 5.4

9 Pointer initialization 5.5

10 Data statement restrictions lifted 5.6

11 Kind of a forall index 5.7

12 Typ§ stgtement for iptrinsic types TYPE 53
(intrinsic type) specifier

13 Declaring type-bound procedures 5.9

14 Value .attribute is permitted for any nonallocatable 5101
nonpointer noncoarray

15 Ina pure prgcedure the intent qf an argument need not be 5102
specified if it has the value attribute
Data Usage 6

16 Simply contiguous arrays rank remapping to rank>1 target 43

17 Omitting an allocatable component in a structure constructor 6.1

18 Multiple allocations with source= 6.2

19 Copying the properties of an object in an allocate statement 6.3

20 MOLD-= specifier for ALLOCATE 6.3

21 Copying the bounds of a source array in an allocate statement 6.3

22 Polymorphic assignment 6.4

23 Accessing real and imaginary parts 6.5

24 Pointer function reference is a variable 6.6

25 Elemental dummy argument restrictions lifted 6.7
Input/Output 7

26 Finding a unit when opening a file 7.1

27 20 edit descriptor 7.2

28 Unlimited format item 7.3

29 Recursive i/o 7.4

9 ACM Fortran Forum, April 2020, 39, 1

Ezl?;ll:l)?r Fortran 2008 Features rzu(irlfber rzlg?fber

Execution control 8
30 The block construct 8.1
31 Exit statement 8.2
32 Stop code 8.3
33 ERROR STOP 8.4

Intrinsic procedures and modules 9

Bit processing 9.1
34 Bit sequence comparison 9.1-1
35 Combined shifting 9.1-2
36 Counting bits 9.1-3
37 Masking bits 9.1-4
38 Shifting bits 9.1-5
39 Merging bits 9.1-6
40 Bit transformat ional functions 9.1.7
41 Storage size 9.2
42 Optional argument radix added to selected real kind 9.3
43 Extensions to trigonometric and hyperbolic intrinsic functions 9.4
44 Bessel functions 9.5
45 Error and gamma functions 9.6
46 Euclidean vector norms 9.7
47 Parity 9.8
48 Execute command line 9.9
49 Optional back argument added to maxloc and minloc 9.1
50 Find location in an array 9.1.1
51 String comparison 9.1.2
52 Constants 9.1.3
53 COMPILER VERSION 9.1.4

ACM Fortran Forum, April 2020, 39, 1 10

Eﬁf;l;l; Fortran 2008 Features rzlgrlfber flg?fber
54 COMPILER _OPTIONS 9.14
55 Function for C sizeof 9.1.5
56 Added optional argument for ieee selected real kind 9.1.6
Programs and procedures 10
57 Save attribute for module and submodule data 10.1
58 Empty contains section 10.2
59 Form of the end statement for an internal or module procedure 10.3
60 Internal procedure as an actual argument or pointer target 10.4
61 Null pointer or unallocated allocatable as an absent dummy argument 10.5
62 Non pointer actual for pointer dummy argument 10.6
63 generic resolution by procedureness 10.7.1
64 Generic resolution by pointer versus allocatable 10.7.2
65 Impure elemental procedures 10.8
66 Entry statement becomes obsolescent 10.9
Source form 11
67 Semicolon at line start 11.1
Annex C Fortran 2018 standard

The following features were new in Fortran 2008 but not
originally listed in its introduction as being new features:

68 A PROCEDURE statement can have a double colon before the first 3
procedure name.

The PROTECTED attribute can be specified by the

69 .
procedure declaration statement.

70 A defined-operator can be used in a specification expression. 6

7 All transformational functions from the intrinsic module 75
ISO_C BINDING can be used in specification expressions. '

Arguments to C_LOC in the intrinsic module

72 ISO_C BINDING, see note 14 below.

11 ACM Fortran Forum, April 2020, 39, 1

Eﬁf;l;l; Fortran 2008 Features rzu(irlfber rzlg?fber
The name of an external procedure that has a binding label is a
73 local identifier and not a global identifier argument that
corresponds a procedure pointer dummy
74 A procedure. that is not a procedure ppinter can be an actual
argument with the INTENT (IN) attribute.
75 {\n interface body for an external' procedur§ that doe?s ngt exist
in a program can be used to specify an explicit specific interface
76, Note 1 | Internal specific for generic
3.1.1 Notes
1: Interpretation F18/012, which was passed as paper 19-179.
Here is the implementation summary.
Feature number | Absoft | Arm | Cray | Fujitsu | gfortran | IBM | Intel | Nag | NEC | Oracle | PGI
14 19.1 840 |203 |9x 15.1.5 | 190 | 7.0 23.1 |88 18.10
1 N Y Y N Y Y Y Y N N Y
2 N N Y P Y,2 |N Y Y Y,21 | N N
3 N Y Y Y P Y Y Y N N Y
4 N Y Y Y Y Y Y Y Y N Y
5 N N Y P N Y Y Y Y N N
6 Y,3 Y Y Y,3 Y Y Y Y Y Y Y
7 N N Y N N N Y N N Y N
8 N N Y Y Y Y Y Y Y N N
9 N N Y N Y N Y N N N Y. 4
10 N Y Y N N Y Y N N N
11 N N Y N N Y Y Y Y N Y
12 N Y N Y Y Y Y Y N N
13 N Y Y Y Y Y Y Y N N
14 N Y N Y P,5 Y Y N N N
15 Y Y N Y Y Y Y Y N N
16 N Y Y Y Y Y Y Y N Y

ACM Fortran Forum, April 2020, 39, 1 12

S

=l %)

R R T O O o O o BV U T O O T O D A A A A I A R

o

M.dwOO

Sl szl z z|>=| > =zl z|z|l z|z|lz|l = z z| =z z\z| z|lz|lz|z z|z| z| z

2| =

A B I S S e S R S R A A e e e A B R B R S S S S O B S S ISR RS

@l o

A S S R e O R I I - S S B S T R R S ST ST S S Ol U [SR R e

T2

R I R T N I B N N N S T R o R B B B N R S T S
0

> | —

Bl 2z o > o > >z Z =z oz oz o e o e e e e =z | |

g

mx e

RS A O R R A - T H A B Bl B R S B i N A S S S S ST S IS S ST

2

2] @

Elalzlzl ==l zlzlzlzlz|lz|z|z| > Z| 0|0 > > =]] | | z| = z]| >

= 2

IR T T Y T IS U I RV R OR RO S O R N S S R R SR SR
— o~ [ele) N
Dl z oz = ==zl Zz = =z = =zl z =zl zlz ezl Zz ozl Zz| =] Zz]| &
= z | z| =z z|z|z|lz| z| z| =z S| >z > |z Z| Z | >

Feature number | Absoft | Arm

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

ACM Fortran Forum, April 2020, 39, 1

13

S
- O O T B O N O O O o T O N S S S o A Y I I
o
M.dwOO
Sl sl z z z|»=lz|lz|lzl = z|lz|z| z|z| =z z|z|lz | z|z z|=z| =z
2| =
A R T R N e N A A I R A R T B TR T L B p i e
Pl o
A R R A T B T T e R e R L B O T e L U U R ol T o 4
3| S
R = T T B I I T T i R e e e O e I T) I Vi U (U i R U RV Rl
\
> | —
N A A A R S R A S S A R R SR S S o > | = =] Z]| Z
=]
E =
>
SIS T A - A R S - A - R O O i R e N A
2
E| @
Elalzlalz zlzlzlzl »=lal ===zl =zl z|lz|=lz|lz|lz|z|z| >
> S
AR S T T SR I R VT I B OR (O () O YU U EUR (U B OR (U RO B
— - a “
Dl ozl zlzlz o = = oz =z oz e = | =z] | =z Z| Z
Tl = z| z| | Z z| z| =z > z | z z | z| z| = >

Feature number | Absoft | Arm

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

14

ACM Fortran Forum, April 2020, 39, 1

Feature number | Absoft | Arm | Cray | Fujitsu | gfortran | IBM | Intel | Nag | NEC | Oracle | PGI
14 19.1 84.0 [2.03 |9x 15.1.5 | 19.0 |7.0 23.1 |88 18.10

71 N N Y N

72 N Y Y

73 N Y Y Y

74 N Y Y

75 Y Y Y

76

Notes

Y Yes

N No

P Partial
Not known

2 Single image support since 4.6. Multi-image support using OpenCoarrays (including the Fortran
2018 collective subroutines) since 5.1, except allocatable or pointer components of derived type coarrays.

3 INTEGER (KIND=8)

4 but only for NULL as initialiser

5 Missing VALUE on dummy with non-constant type parameters

6 gfortran via allocate but not via intrinsic assignment

7 Not supported for complex arrays.

8 leadz, popent, and poppar supported. No trailz

9 Complex types are not accepted for acosh, asinh, and atanh, Additionally, atan2 cannot be accessed via atan.

10 int, real, and coarray

11 Not supported for procedures.

12 Not supported for null pointer.

13 Only shows a warning with the -Mstandard flag.

14 A contiguous array variable that is not interoperable but which has interoperable type and kind type
parameter (if any), and a scalar character variable with length greater than 1 and kind C CHAR in the
intrinsic module ISO_C BINDING, can be used as the argument of the function C_LOC in the intrinsic
module ISO_C_BINDING, provided the variable has the POINTER or TARGET attribute.

20 Full semantics but only single image support

21 Single image support

Here is the summary table with counts.

15 ACM Fortran Forum, April 2020, 39, 1

fg:;;;i?gi Absoft | Arm | Cray | Fujitsu | gfortran | IBM | Intel | NAG | NEC | Oracle | PGI
Compiler

version 14 18.1 840 |203 |82 15.1.5 | 19.1 7.0 23.1 |88 18.10
number

Y 12 28 66 27 48 52 75 68 55 10 33
Y with notes 1 0 0 0 2 0 0 0 0 0

N 35 39 0 35 13 21 0 7 11 56 32
N with notes 0 0 0 0 2 0 0 0 0 0

P 0 0 0 4 1 0 0 0 0 0

P with notes 0 6 0 1 3 1 0 0 0 1
No information | 28 13 10 9 9 2 1 1 9 10 9
Total 76 76 76 76 76 76 76 76 76 76 76

3.2 Fortran 2018 support

Here is the feature list table for Fortran 2018. It is based on the Introduction of the Fortran 2018 standard, pages xiii-xv.
John Reid has produced two papers that provide a more descriptive coverage.

* N2161 - The New Features of Fortran 2018 (Reid - Replaces N2145)
* N2145 - Summary of Fortran 2018 (Reid - Replaced by N2161)

These can be found at the WGS5 site.

Section Sub. Description
section
1 Data declaration:
1.1 Constant properties of an object declared in its entity-decl can be used in its initialization.
12 The EQUIVALENCE and COMMON statements and the block data program unit have been
' redundant since Fortran 90 and are now specified to be obsolescent.
13 Diagnosis of the appearance of a PROTECTED TARGET variable accessed by use association
' as a data-target in a structure constructor is required.
2 Data usage and computation:
21 The declared type of the value supplied for a polymorphic allocatable component in a structure
' constructor is no longer required to be the same as the declared type of the component.
2.2 FORALL is now specified to be obsolescent.

ACM Fortran Forum, April 2020, 39, 1 16

Sub

Section . Description
section
23 The type and kind of an implied DO variable in an array constructor or DATA statement can be
' specified within the constructor or statement.
24 The SELECT RANK construct provides structured access to the elements of an assumed-rank
' array.
The standard intrinsic operations <, <=, >, and >= (also known as .LT., .LE., .GT., and .GE.) on
2.5
IEEE numbers provide compareSignaling (relation) operations;
26 The = and /= operations (also known as .EQ. and .NE.) provide compareQuiet (relation)
' operations.
2.7 Finalization of an allocatable subobject during intrinsic assignment has been clarified.
23 The char-length in an executable statement is no longer required to be a
' specification expression.
3 Input/output:
3.1 The SIZE= specifier can be used with advancing input.
3.2 It is no longer prohibited to open a file on more than one unit.
33 The value assigned by the RECL= specifier in an INQUIRE statement has been standardized.
34 The values assigned by the POS= and SIZE= specifiers in an INQUIRE statement for a unit that
' has pending asynchronous operations have been standardized.
3.5 The GO.d edit descriptor can be used for list items of type Integer, Logical, and Character.
36 The D, E, EN, and ES edit descriptors can have a field width of zero, analogous to the F edit
' descriptor.
3.7 The exponent width ¢ in a data edit descriptor can be zero, analogous to a field width of zero.
33 Floating-point formatted input accepts hexadecimal-significand numbers that conform to
' ISO/IEC/IEEE 60559:2011.
3.9 The EX edit descriptor provides hexadecimal-significand formatted output conforming to
310 An error condition occurs if unacceptable characters are presented for logical or numeric
' editing during execution of a formatted input statement.
4 Execution control:
4.1 The arithmetic IF statement has been deleted.
49 Labeled DO loops have been redundant since Fortran 90 and are now specified to be
' obsolescent.
43 The nonblock DO construct has been deleted.
4.4 The locality of a variable used ina DO CONCURRENT construct can be explicitly specified.

17 ACM Fortran Forum, April 2020, 39, 1

Sub

Section . Description
section
4.5 The stop code in a STOP or ERROR STOP statement can be nonconstant.
46 Output of the stop code and exception summary from the STOP and ERROR STOP statements
' can be controlled.
5 Intrinsic procedures and modules:
51 In a reference to the intrinsic function CMPLX with an actual argument of type complex, no
' keyword is needed for a KIND argument.
In references to the intrinsic functions ALL, ANY, FINDLOC, TALL, IANY, IPARITY,
52 MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT, SUM, and
THIS IMAGE, the actual argument for DIM can be a present optional dummy argument.
53 The new intrinsic function COSHAPE returns the coshape of a coarray.
54 The new intrinsic function OUT_OF RANGE tests whether a numeric value can be safely
' converted to a different type or kind.
55 The new intrinsic subroutine RANDOM _INIT establishes the initial state of the pseudorandom
' number generator used by RANDOM_NUMBER.
5.6 The new intrinsic function REDUCE performs user-specified array reductions.
57 A processor is required to report use of a nonstandard intrinsic procedure, use of a nonstandard
' intrinsic module, and use of a nonstandard procedure from a standard intrinsic module.
Integer and logical arguments to intrinsic procedures and intrinsic module procedures that were
5.8 previously required to be of default kind no longer have that requirement,
except for RANDOM_SEED.
5.9 Specific names for intrinsic functions are now deemed obsolescent.
510 All standard procedures in the intrinsic module ISO_C_BINDING, other than C F POINTER,
' are now pure.
5.11 The arguments to the intrinsic function SIGN can be of different kind.
512 Nonpolymorphic pointer arguments to the intrinsic functions EXTENDS TYPE OF and
' SAME _TYPE_AS need not have defined pointer association status.
The effects of invoking the intrinsic procedures COMMAND ARGUMENT COUNT,
5.13 GET COMMAND, and GET COMMAND ARGUMENT, on images other than image one,
are no longer processor dependent.
Access to error messages from the intrinsic subroutines GET COMMAND,
5.14 GET COMMAND ARGUMENT, and GET ENVIRONMENT VARIABLE is provided by
an optional ERRMSG argument.
5.15 The result of NORM?2 for a zero-sized array argument has been clarified.
6 Program units and procedures:

ACM Fortran Forum, April 2020, 39, 1 18

Sub

Section . Description
section
6.1 The IMPORT statement can appear in a contained subprogram or BLOCK construct, and can
' restrict access via host association;
6.2 Diagnosis of violation of the IMPORT restrictions is required.
6.3 The GENERIC statement can be used to declare generic interfaces.
6.4 The number of procedure arguments is used in generic resolution.
6.5 In a module, the default accessibility of entities accessed from another module can be
' controlled separately from the default accessibility of entities declared in the using module.
6.6 An IMPLICIT NONE statement can require explicit declaration of the EXTERNAL attribute
' throughout a scoping unit and its contained scoping units.

6.7 A defined operation need not specify INTENT (IN) for a dummy argument with the VALUE
' attribute.

6.8 A defined assignment need not specify INTENT (IN) for the second dummy argument if it has
' the VALUE attribute.

6.9 Procedures that are not declared with an asterisk type-param-value, including ELEMENTAL
' procedures, can be invoked recursively by default;

6.10 The RECURSIVE keyword is advisory (most procedures are recursive by default) only.

6.11 The NON_RECURSIVE keyword specifies that a procedure is not recursive.

6.12 The ERROR STOP statement can appear in a pure subprogram.

6.13 A dummy argument of a pure function is permitted in a variable definition context, if it has the
' VALUE attribute.

6.14 A coarray dummy argument can be referenced or defined by another image.

7 Features previously described by ISO/IEC TS 29113:2012:

7.1 A dummy data object can assume its rank from its effective argument.

79 A dummy data object can assume the type from its effective argument, without having the
' ability to perform type selection.

73 An interoperable procedure can have dummy arguments that are assumed-type
' and/or assumed-rank.

74 An interoperable procedure can have dummy data objects that are allocatable, assumed-shape,
' optional, or pointers.

7.5 The character length of a dummy data object of an interoperable procedure can be assumed.

7.6 The argument to C_LOC can be a noninteroperable array.

7.7 The FPTR argument to C_F POINTER can be a noninteroperable array pointer.

19 ACM Fortran Forum, April 2020, 39, 1

Sub

Section . Description
section
7.8 The argument to C FUNLOC can be a noninteroperable procedure.
7.9 The FPTR argument to C_ F PROCPOINTER can be a noninteroperable procedure pointer.
710 There is a new named constant C PTRDIFF T to provide interoperability with the C type
' ptrdiff t.
Additionally to ISO/IEC TS 29113:2012, a scalar actual argument can be associated with an
assumed-type assumed-size dummy argument, an assumed-rank dummy data object that is not
7.11 associated with an assumed-size array can be used as the argument to the function C_SIZEOF
from the intrinsic module ISO_C_BINDING, and the type argument to CFI_establish can have
a positive value corresponding to an interoperable C type.
3 Changes to the intrinsic modules IEEE_ ARITHMETIC, IEEE EXCEPTIONS,
and IEEE FEATURES for conformance with ISO/IEC/IEEE 60559:2011:
8.1 There is a new, optional, rounding mode IEEE AWAY.
8.2 The new type IEEE MODES TYPE encapsulates all floating-point modes.
23 Features associated with subnormal numbers can be accessed with functions and types named
' ...SUBNORMAL... (the old ...DENORMAL... names remain).
8.4 The new function IEEE_FMA performs fused multiply-add operations.
8.5 The function IEEE_INT performs rounded conversions to integer type.
26 The new functions IEEE MAX NUM, IEEE MAX NUM MAG, IEEE MIN NUM, and
' IEEE MIN NUM_MAG calculate maximum and minimum numeric values.
3.7 The new functions IEEE_ NEXT DOWN and IEEE NEXT _UP return the adjacent machine
' numbers.
The new functions IEEE QUIET EQ, IEEE QUIET GE,
8.8 IEEE QUIET GT, IEEE QUIET LE, IEEE QUIET LT, and IEEE QUIET NE perform
quiet comparisons.
The new functions IEEE_SIGNALING EQ, IEEE _SIGNALING GE,
8.9 IEEE _SIGNALING GT, IEEE SIGNALING GE, IEEE SIGNALING LE,
IEEE_SIGNALING LT, and IEEE SIGNALING NE perform signaling comparisons.
The decimal rounding mode can be inquired and set independently of the binary rounding
8.10 mode, using the RADIX argument to [IEEE GET ROUNDING MODE
and IEEE_ SET ROUNDING MODE.
8.11 The new function IEEE_REAL performs rounded conversions to real type.
8.12 The function [IEEE_REM now requires its arguments to have the same radix.
8.13 The function IEEE_RINT now has a ROUND argument to perform specific rounding.
8.14 The new function IEEE_SIGNBIT tests the sign bit of an [EEE number.

ACM Fortran Forum, April 2020, 39, 1 20

Sub

Section . Description
section
9 Features previously described by ISO/IEC TS 18508:2015:
9.1 The CRITICAL statement has optional ERRMSG= and STAT= specifiers.
9.2 The intrinsic subroutines ATOMIC DEFINE and ATOMIC REF have an optional STAT
' argument.
The new intrinsic subroutines ATOMIC_ADD, ATOMIC AND, ATOMIC_CAS,
9.3 ATOMIC_FETCH_ADD, ATOMIC FETCH AND, ATOMIC_FETCH_OR,
ATOMIC FETCH XOR, ATOMIC OR, and ATOMIC XOR perform atomic operations.
9.4 The new intrinsic functions FAILED IMAGES and STOPPED IMAGES return indices of
' images known to have failed or stopped respectively.
9.5 The new intrinsic function IMAGE STATUS returns the image execution status of an image.
9.6 The intrinsic subroutine MOVE_ALLOC has optional ERRMSG and STAT arguments.
9.7 The intrinsic functions IMAGE INDEX and NUM_IMAGES have additional forms with a
' TEAM or TEAM_NUMBER argument.
9.8 The intrinsic function THIS IMAGE has an optional TEAM argument.
9.9 The EVENT POST and EVENT WAIT statements, the intrinsic subroutine EVENT QUERY,
' and the type EVENT_TYPE provide an event facility for one-sided segment ordering.
The CHANGE TEAM construct, derived type TEAM_ TYPE, FORM TEAM and SYNC
TEAM statements, intrinsic functions GET TEAM and TEAM NUMBER, and the TEAM=
9.10 and TEAM_ NUMBER= specifiers on image selectors, provide a team facility for a subset of
the programs images to act in concert as if it were the set of all images. This team facility allows
an allocatable coarray to be allocated or deallocated on a subset of images.
011 The new intrinsic subroutines CO_ BROADCAST, CO_MAX, CO_MIN, CO_REDUCE, and
' CO_SUM perform collective reduction operations on the images of the current team.
The concept of failed images, the FAIL IMAGE statement, the STAT= specifier on image
9.12 selectors, and the named constant STAT FAILED IMAGE from the intrinsic module
ISO_FORTRAN_ENV provide support for fault-tolerant parallel execution.
10 Changes to features previously described by ISO/IEC TS 18508:2015:
10.1 The CHANGE TEAM and SYNC TEAM statements, and the TEAM= specifier on image
' selectors, permit the team to be specified by an expression.
102 The intrinsic functions FAILED IMAGES and STOPPED IMAGES have no restriction on
' the kind of their result.
103 The name of the function argument to the intrinsic function CO_REDUCE is OPERATION
' instead of OPERATOR; this argument is not required to be commutative.
104 The named constant STAT UNLOCKED FAILED IMAGE from the intrinsic module

ISO_FORTRAN_ENV indicates that a lock variable was locked by an image that failed.

21 ACM Fortran Forum, April 2020, 39, 1

Section Sub' Description
section
105 The team number for the initial team can be used in image selectors, and in the intrinsic
' functions NUM_IMAGES and IMAGE INDEX.
106 A team variable that appears in a CHANGE TEAM statement can no longer be defined or
' become undefined during execution of the CHANGE TEAM construct.
107 All images of the current team are no longer required to execute the same CHANGE TEAM
' statement.
108 A variable of type TEAM TYPE from the intrinsic module ISO_ FORTRAN_ENV is not
' permitted to be a coarray.
A variable of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENYV can have a
10.9 pointer component, and a team variable becomes undefined if assigned a value from another
image.
1010 The intrinsic function UCOBOUND produces a value for the final upper cobound that is
' always relative to the current team.
10.11 An EXIT statement can be used to complete execution of a CHANGE TEAM or CRITICAL
' construct.

Here is the implementation summary.

Vendor Absoft | Arm | Cray | Fujitsu | gfortran | IBM | Intel | Nag | Nec | Oracle | PGI
Compiler 14 18.1 |9.1.0 | 2.03 |72 15.1.5 | 19.1 | 7.0 | 2.3.1 |88 16.4
version
Fortran 2018
feature name
and number
Data
declaration: L1 Y Y N
1.2 Y Y N
1.3 Y
Data usage and 21 v N
computation:
2.2 Y Y N
2.3 Y N
24 Y Y N

ACM Fortran Forum, April 2020, 39, 1 22

Vendor Absoft | Arm | Cray | Fuyjitsu | gfortran | IBM | Intel | Nag | Nec | Oracle | PGI
S:;;Eﬂer 14 18.19.1.0 203 |72 1515 [19.1 |70 |23.1|88 | 164
2.5 Y N
2.6 Y N
2.7 Y Y N
2.8 Y Y N

Input/output: 3.1 Y Y N
3.2 Y Y N
3.3 Y Y N
34 Y Y N
3.5 Y Y N Y
3.6 Y Y N
3.7 Y Y N
3.8 Y Y N
3.9 Y Y N
3.10 Y Y N
etion v v
4.2 Y Y N
4.3 Y Y N
4.4 N Y N Y
4.5 Y Y Y
4.6 Y Y Y
Intrinsic
procedures and | 5.1 Y Y N
modules:
52 Y N
5.3 Y Y N
54 Y N
5.5 Y N

23 ACM Fortran Forum, April 2020, 39, 1

Vendor Absoft | Arm | Cray | Fuyjitsu | gfortran | IBM | Intel | Nag | Nec | Oracle | PGI
S:;;Eﬂer 14 18.19.1.0 203 |72 1515 [19.1 |70 |23.1|88 | 164
5.6 N N
5.7 Y Y N
5.8 Y Y N
5.9 Y Y N
5.10 N Y N
5.11 Y Y N
5.12 Y Y N
5.13 Y Y N
5.14 Y N

5.15 Y Y N Y

Program units

and 6.1 Y Y N

procedures:
6.2 Y Y N
6.3 Y Y N
6.4 Y Y N
6.5 Y Y N
6.6 Y Y N
6.7 Y N
6.8 Y Y N
6.9 Y Y1 N
6.10 Y Y1 N
6.11 Y Y N
6.12 Y Y N
6.13 Y N
6.14 Y Y N

ACM Fortran Forum, April 2020, 39, 1

24

Vendor Absoft | Arm | Cray | Fuyjitsu | gfortran | IBM | Intel | Nag | Nec | Oracle | PGI

S:;;Eﬂer 14 181 9.1.0 | 2.03 |72 1515 19.1 | 7.0 |23.1 |88 | 164

Previously in

ISO/IEC TS 7.1 Y Y N

29113:2012:
7.2 Y Y N
7.3 Y Y N
7.4 Y Y N
7.5 Y Y N
7.6 Y Y N
7.7 Y Y N
7.8 Y Y N
7.9 Y Y N
7.10 Y Y N
7.11 Y Y N

Conformance

;g:)ll/IEC/IEEE 8.1 N Y N

60559:2011:
8.2 N Y N
8.3 Y Y N
8.4 Y Y N
8.5 Y Y N
8.6 Y Y N
8.7 Y Y N
8.8 Y Y N
8.9 Y Y N
8.10 Y Y N
8.11 Y Y N
8.12 Y Y N
8.13 Y Y N

25 ACM Fortran Forum, April 2020, 39, 1

Vendor Absoft | Arm | Cray | Fuyjitsu | gfortran | IBM | Intel | Nag | Nec | Oracle | PGI

S;I;gﬂer 14 18.1 [9.1.0 | 203 |72 1515 [19.1 | 7.0 |23.1|88 | 164
8.14 Y Y N

Previously in

ISO/IEC TS 9.1 N Y N

18508:2015:
9.2 Y Y N
9.3 Y Y N
9.4 N Y2 N
9.5 N Y2 N
9.6 Y Y Y
9.7 N N
9.8 N N
9.9 Y Y N
9.10 N N
9.11 Y Y N
9.12 N Y N

Previously in

ISO/IEC TS 10.1 N N

18508:2015:
10.2 N Y N
10.3 N Y N
10.4 N Y N
10.5 N N
10.6 N N
10.7 N N
10.8 N N
10.9 N N
10.10 Y N
10.11 N N

ACM Fortran Forum, April 2020, 39, 1 26

3.3 References
The WG 5 site has copies of John Reid's papers. These are
* N2161 - The New Features of Fortran 2018 (Reid - Replaces N2145)
* N2145 - Summary of Fortran 2018 (Reid - Replaced by N2161)
* NI1828 - The new features of Fortran 2008 (Reid)
* NI1891 The new features of Fortran 2008 (Reid)
https://wgb-fortran.org/
The ISO has copies of the standards. The current standard is: 1539-1:2018 2018 November Fortran 2018.
https://www.iso.org/standards.html
Here is a summary of recent standards.
* TR 15580:1998 1998 December Floating-point exception handling Withdrawn
e TR 15580:2001 2001 June Withdrawn
* TR 15581:1998 1998 December Enhanced data type facilities Withdrawn
e TR 15581:2001 2001 June Withdrawn
e TR 19767:2005 2005 February Enhanced module facilities Withdrawn
* TS 29113:2012 2012 December Further interoperability of Fortran with C Current
* TS 18508:2015 2015 December Additional Parallel Features in Fortran Current
J3 also has a wide range of documents available. Details of interpretation request 19-179 are given below.

https://j3-fortran.org/doc/year/19/19-179.txt

3.4 Acknowledgements
The following people have contributed to these tables over quite a long time!
* Absoft: Wood Lotz

* Arm: - Richard Barton, John MacCallum, Ashok Bhat, Nathan Sircombe, Kiran Chandramohan, Caroline
Concatto, Peter Waller

* Cray: Bill Long

* Fuyjitsu: Minoru Tanaka, Yuuji Tsujimori

¢ gfortran: fxcoudert (fx) , Paul Richard Thomas, Tobias Burnus

¢ IBM: Rafik Zurob, Daniel C Chen

* Intel: Lorri Menard, Jon L Steidel, Steve Lionel, Stan Whitlock

* Nag: Malcolm Cohen

¢ Nec: Yasuharu Hayashi

* Oracle: Calvin Vu

* PGI: Dave Norton, Pat Brooks, Brent Leback, Gary Klimowicz, Mark Leair
¢ Other: Takata Masayuki, Van Snyder

Thanks to everyone.

27 ACM Fortran Forum, April 2020, 39, 1

