
ISO/IEC JTC1/SC22/WG5 N1891

The new features of Fortran 2008

John Reid, JKR Associates, UK

March 13, 2014

Abstract

The aim of this paper is to summarize the new features of the Fortran 2008 standard
(ISO/IEC 2010). We take as our starting point Fortran 2003 (ISO/IEC 2004).

An official extension for enhanced module facilities was published as a Type 2 Technical
Report (ISO/IEC 2005) and WG5 was committed to include this in Fortran 2008.

For an informal description of Fortran 2003, the enhanced module facilities, and the new
features of Fortran 2008, see Metcalf, Reid, and Cohen (2011).

The major extension consists of coarrays for parallel computing. Since the author has already
summarized coarrays in another WG5 paper (Reid 2010), we refer the reader to this for
details.

This article is not an official document and has not been approved by PL22.3
(formerly J3) or WG5.

1

2 ISO/IEC JTC1/SC22/WG5 N1891

Contents

1 Introduction 5

2 Submodules 5

3 Coarrays 7

4 Performance enhancements 7

4.1 do concurrent . 7

4.2 Contiguous attribute . 8

4.3 Simply contiguous arrays . 10

5 Data declaration 10

5.1 Maximum rank . 10

5.2 Long integers . 11

5.3 Allocatable components of recursive type . 11

5.4 Implied-shape array . 12

5.5 Pointer initialization . 12

5.6 Data statement restrictions lifted . 12

5.7 Kind of a forall index . 12

5.8 Type statement for intrinsic types . 12

5.9 Declaring type-bound procedures . 12

5.10 Extensions to value attribute . 13

6 Data usage 13

6.1 Omitting an allocatable component in a structure constructor 13

6.2 Multiple allocations with source= . 13

6.3 Copying the properties of an object in an allocate statement 13

6.4 Polymorphic assignment . 13

6.5 Accessing real and imaginary parts . 14

6.6 Pointer functions . 14

6.7 Elemental dummy argument restrictions lifted . 14

7 Input/Output 14

7.1 Finding a unit when opening a file . 14

ISO/IEC JTC1/SC22/WG5 N1891 3

7.2 g0 edit descriptor . 15

7.3 Unlimited format item . 15

7.4 Recursive input/output . 15

8 Execution control 15

8.1 The block construct . 15

8.2 Exit statement . 16

8.3 Stop code . 16

9 Intrinsic procedures and modules 16

9.1 Bit processsing . 16

9.1.1 Bit sequence comparison . 16

9.1.2 Combined shifting . 17

9.1.3 Counting bits . 17

9.1.4 Masking bits . 17

9.1.5 Shifting bits . 18

9.1.6 Merging bits . 18

9.1.7 Bit transformational functions . 18

9.2 Storage size . 19

9.3 Optional argument radix added to selected real kind 19

9.4 Extensions to trigonometric and hyperbolic intrinsic functions 19

9.5 Bessel functions . 19

9.6 Error and gamma functions . 20

9.7 Euclidean vector norms . 20

9.8 Parity . 21

9.9 Execute command line . 21

9.10 Optional argument back added to maxloc and minloc 22

9.11 Find location in an array . 22

9.12 String comparison . 22

9.13 Constants . 23

9.14 Compiler information . 23

9.15 Function for C sizeof . 23

9.16 Additional optional argument for ieee selected real kind 24

4 ISO/IEC JTC1/SC22/WG5 N1891

10 Programs and procedures 24

10.1 Save attribute for module and submodule data . 24

10.2 Empty contains part . 24

10.3 Form of the end statement for an internal or module procedure 24

10.4 Internal procedure as an actual argument or pointer target 24

10.5 Null pointer or unallocated allocatable as an absent dummy argument 25

10.6 Non-pointer actual for pointer dummy argument . 25

10.7 Generic resolution by pointer/allocatable or data/procedure 25

10.8 Elemental procedures that are not pure . 25

10.9 Entry statement becomes obsolescent . 26

11 Source form 26

11.1 Semicolon at line start . 26

12 Acknowledgements 26

13 References 26

ISO/IEC JTC1/SC22/WG5 N1891 5

1 Introduction

Fortran is a computer language for scientific and technical programming that is tailored for
efficient run-time execution on a wide variety of processors. It was first standardized in 1966
and the standard has since been revised five times (1978, 1991, 1997, 2004, 2010). The revisions
alternated between being minor (1978, 1997, and 2010) and major (1991 and 2004). Features
for further interoperability have been defined in a Technical Specification (ISO/IEC 2012) and
work has commenced on defining further coarray features in another Technical Specification.

We use the convention of indicating the optional arguments of an intrinsic procedure by enclosing
them in square brackets in the argument list. We also use square brackets for other optional
syntax elements.

2 Submodules

The module facilities of Fortran 2003, while adequate for programs of modest size, have short-
comings for very large programs. They all arise from the fact that, although modules are an aid
to modularization of the program, they are themselves difficult to modularize.

As a module grows larger, the only way to modularize it is to break it into several modules.
This exposes the internal structure, raising the potential for unnecessary global name clashes
and giving the user of the module access to what ought to be private data and/or procedures.
Worse, if the subfeatures of the module are interconnected, they must remain together in a single
module, however large.

Another significant shortcoming is that if a change is made to the code inside a module procedure,
even a private one, typical use of make or a similar tool results in the recompilation of every file
which accesses the module, directly or indirectly.

The solution is to allow a module procedure to have its interface defined in a module while its
body is defined in a separate program unit called a submodule. A change in a submodule cannot
alter an interface in the module, and so does not cause the recompilation of program units that
use the module.

A submodule has access via host association to entities in the module, and may have entities
of its own in addition to providing implementations of module procedures. A simple example is
shown in Figure 1. The interface specified in the submodule must be exactly the same as that
specified in the interface block. There is also a syntax that avoids the redeclaration altogether:

submodule (points) points_a

contains

module procedure point_dist

point_dist = sqrt((a%x-b%x)**2+(a%y-b%y)**2)

end procedure point_dist

end submodule points_a

6 ISO/IEC JTC1/SC22/WG5 N1891

Figure 1: A module and a submodule.

module points

type :: point

real :: x,y

end type point

interface

real module function point_dist (a,b)

type(point), intent(in) :: a,b

end function point_dist

end interface

end module points

submodule (points) points_a

contains

real module function point_dist (a,b)

type(point), intent(in) :: a,b

point_dist = sqrt((a%x-b%x)**2+(a%y-b%y)**2)

end function point_dist

end submodule points_a

Submodules are themselves permitted to have submodules, which is useful for very large pro-
grams. If a change is made to a submodule, only it and its descendants will need recompilation.

A submodule of a submodule identifies its parent in its submodule statement by the combination
of the name of its ancestor module and the name of its parent, for example, points:points a

for a submodule of the above submodule. This allows two submodules to have the same name
if they are descendants of different modules.

The submodule feature was defined by a Technical Report (ISO/IEC 2005), with a promise that
its features would be included in Fortran 2008, apart from the correction of any defects. It offers
two further advantages:

• Defining the interfaces of procedures in a module and implementing them in submodules
allows one to publish the details of the interfaces while withholding publication of the
submodules and their trade secrets.

• Submodules allow one to package the procedures of a module as a library from which
the system need only incorporate procedures that the program references, rather than
incorporating the entire module.

The feature is described more fully in Chapter 18 of Metcalf, Reid, and Cohen (2011).

ISO/IEC JTC1/SC22/WG5 N1891 7

3 Coarrays

Coarrays provide a simple extension to Fortran for parallel programming on distributed-memory
and shared-memory architectures. The program is treated as if it were replicated a fixed number
of times and each replication is called an image. An additional set of subscripts provides access
from any image to data on another image. Care has been taken to allow compilers to optimize
both execution on an image and communication between images.

For coarrays, a summary is already available in N1824, so we do not describe them here. They
are also described in Chapter 19 of Metcalf, Reid, and Cohen (2011).

4 Performance enhancements

4.1 do concurrent

The do concurrent form of the do loop allows the programmer to state that there are no
data dependencies between the iterations of a do loop and hence enables optimizations such as
vectorization, loop unrolling, and multi-threading. It standarizes different directives that have
been recognized by different compilers for a very long time, with different exact meanings. The
construct is intended for optimizations within a single image, so no image control statements
(for synchronization between images) are permitted within it.

The do statement itself becomes

do [,] concurrent forall-header

It uses some of the forall syntax and the resulting do construct has some similarities with the
forall construct, but there are important differences:

• the forall is essentially an array assignment statement, behaving as if all the right-hand
side expressions were all evaluated before any assignments are made, and

• there are less restrictions on the kind of statements that may appear in a do concurrent

construct.

Here is a simple example

do concurrent (i=1:m)

a(k+i) = a(k+i) + factor*a(l+i)

end do

where the programmer knows that there is no overlap between the range of values accessed and
the range of values altered.

The full set of restrictions is

• no return statement appears

8 ISO/IEC JTC1/SC22/WG5 N1891

• no branch in the construct has a target outside it (e.g. exit is not permitted)

• all procedures referenced are pure

• there are no references to the procedures ieee get flag, ieee set halting mode, and
ieee get halting mode,

• A variable that is referenced in an iteration was either
– previously defined during the iteration or
– is neither defined nor becomes undefined during any other iteration.

• A pointer that is referenced in an iteration was previously pointer associated during the
iteration, or does not have its pointer association changed during any iteration.

• An allocatable object that is allocated in more than one iteration shall be subsequently
deallocated during those same iterations.

• An allocatable object that is referenced, defined, or deallocated in an iteration shall either
be previously allocated in that iteration or shall not be allocated or deallocated in a
different iteration.

• If data are written to a file record or position in one iteration, data shall not be read from
or written to that record or position in that file in a different iteration.

• No image control statements appear.

A volatile variable is permitted, but is likely to be disastrous for optimization.

A variable that is defined or becomes undefined by more than one iteration becomes undefined
when the construct terminates. A pointer that has its pointer association changed in more than
one iteration has an association status of undefined when the construct terminates. Records
written by output statements in the loop range to a sequential access file appear in the file in
an indeterminate order.

4.2 Contiguous attribute

Certain optimizations are possible if the compiler knows that an array occupies a contiguous
memory block, which is the case for an explicit-shape, assumed-size, or allocatable array and
some sections of such an array. Many unnecessary operations happen because compilers cannot
determine that a data item will always occupy contiguous memory. For example, contiguous
memory is needed to pass an array to a procedure with an implicit interface. Thus, the mere
use of pointers often results in substantially suboptimal code. Similar optimization problems
exist for assumed-shape dummy arguments.

The contiguous attribute may be declared for a pointer or assumed-shape array, for example,

real, pointer, contiguous :: ptr(:)

integer, contiguous, dimension(:,:) :: ary

It can also be specified by a contiguous statement:

contiguous [::] object-name-list

ISO/IEC JTC1/SC22/WG5 N1891 9

where the other attributes are specified elsewhere.

The target of a pointer with the contiguous attribute must be contiguous. The actual argument
corresponding to a contiguous assumed-shape array must either be contiguous or be an assumed-
shape array (if necessary, a contiguous copy is made). The actual argument corresponding to a
contiguous pointer array must have the contiguous attribute (so that a simpler descriptor can
be employed).

Other objects that are contiguous:

• a non-pointer whole array that is not assumed-shape,

• an array allocated by an allocate statement,

• a pointer associated with a contiguous target, or

• a nonzero-sized array section provided that

– its base object is contiguous,

– it does not have a vector subscript,

– the elements of the section, in array element order, are a subset of the base object
elements that are consecutive in array element order,

– if the array is of type character and a substring-range appears, the substring-range
specifies all of the characters of the parent-string,

– only its final part-ref has nonzero rank, and

– it is not the real or imaginary part of an array of type complex.

An object is not contiguous if it is an array subobject and

• the object has two or more elements,

• the elements of the object in array element order are not consecutive in the elements of
the base object,

• the object is not of type character with length zero, and

• the object is not of a derived type that has no ultimate components other than zero-sized
arrays and characters with length zero.

Whether or not any other object is contiguous is processor dependent.

The contiguity of an array can be tested with the inquiry function is contiguous(array). It
returns a default logical scalar with the value true if array is contiguous and false otherwise. If
array is a pointer, it must be associated with a target.

Arrays in C are always contiguous, so c loc was not available in Fortran 2003 for a pointer
array. This restriction has been removed for cases where the target is contiguous.

10 ISO/IEC JTC1/SC22/WG5 N1891

4.3 Simply contiguous arrays

The concept of a simply contiguous array has been introduced for an array that is contiguous
and satisfies additional rules that allow the compiler to determine that it is always contiguous.
A section subscript list is simply contiguous if

• it has no vector subscripts,

• it has no strides,

• all but the last section triplet are colons, and

• any subscript follows all section triplets.

An array designator is simply contiguous if it is

• the name of an array with the contiguous attribute,

• the name of an array that is not a pointer or of assumed shape,

• a structure component whose final part name is an array that has the contiguous attribute
or is not a pointer, or

• an array section

– that does not select a real or imaginary part,

– that has no substring range,

– whose final part-ref has nonzero rank,

– whose rightmost part-name has the contiguous attribute or is neither a pointer nor
of assumed shape, and

– that either does not have a section subscript list or has one that is simply contiguous.

An array is simply contiguous if and only if it is a simply contiguous array designator or a
reference to a function that returns a pointer with the contiguous attribute.

Fortran 2003 allows a pointer assignment to associate a pointer of rank greater than one with a
rank-one target:

matrix(1:n,1:n) => base(:)

This is extended to simply contiguous targets of rank greater than one, for example,

matrix(1:n,1:n) => base(:,:,i:j,2)

associates the elements of matrix in array element order with the elements of base(:,:,i:j,2)
in array element order.

5 Data declaration

5.1 Maximum rank

The maximum rank has been increased to 15. In the case of a coarray, the limit of 15 applies
to the sum of the rank and corank.

ISO/IEC JTC1/SC22/WG5 N1891 11

5.2 Long integers

The processor is required to support at least one kind of integer with a range of 18 decimal
digits, for example

integer,parameter :: long = selected_int_kind(18)

integer(long) :: la, ll

This will normally be supported with 64-bit integers and is needed to ensure portability of
software designed to run on machines with very large memories (now increasingly common).

5.3 Allocatable components of recursive type

A recursive type is permitted to be based on allocatable components. Here is a simple example
of a type that holds a stack

type entry

real :: value

integer :: index

type(entry), allocatable :: next

end type entry

Here is how to add a new entry at the top of the stack:

type (entry), allocatable :: top

top = entry (new_value, new_index, top)

Alternative code is as follows:

type (entry), allocatable :: top, temp

temp = entry (new_value, new_index, temp)

call move_alloc(top,temp%next)

call move_alloc(temp,top)

which avoids the possiblity of a deep copy being made into a temporary variable followed by
another deep copy from it. It is reasonable to expect the compiler, when presented with the
first version to perform the equivalent of the second, but it cannot be guaranteed. Similar
considerations apply to the removal of the top entry by the code

top = top%entry

or

call move_alloc(top%next,temp)

call move_alloc(temp,top)

The usual efficiencies associated with allocatables are available: contiguous arrays, no aliasing
(unless given the target attribute), and no memory leaks.

12 ISO/IEC JTC1/SC22/WG5 N1891

5.4 Implied-shape array

An implied-shape array is a named constant that is declared with each upper bound given as
an asterisk. It takes its shape from its constant expression1, for example,

integer, parameter :: order(0:*) = [0, 1, 2, 3]

5.5 Pointer initialization

A pointer may be initially associated with a target with the save attribute:

type (entry), target, save :: bottom

type (entry), pointer :: top => bottom

and a pointer component may be default initialized as associated with a target.

5.6 Data statement restrictions lifted

Subscripts and nested implied-do limits in a data statement can be any constant expression
instead of being limited to combinations of constants, implied-do variables, and intrinsic opera-
tions.

5.7 Kind of a forall index

The kind of a forall index may be specified in the header:

forall (integer(long) :: i = 1:very_large, j = 1:2)

Both i and j are of type integer(long) inside the forall construct.

5.8 Type statement for intrinsic types

The type statement may be used for declaring entities of intrinsic type, for example,

type(integer) :: i,j

type(complex(kind(0.0d0))) :: x,y

The interpretation is exactly the same as it would have been without the keyword type and the
parentheses.

5.9 Declaring type-bound procedures

Multiple type-bound procedures can be declared in a single procedure statement.

1Constant expression were known as “initialization” expressions in Fortran 2003.

ISO/IEC JTC1/SC22/WG5 N1891 13

5.10 Extensions to value attribute

The value attribute is permitted for an array, and for an object with a nonconstant length type
parameter.

In a pure procedure, the intent of an argument need not be specified if the argument is declared
as having the value attribute.

6 Data usage

6.1 Omitting an allocatable component in a structure constructor

It is permitted to omit an allocatable component in a structure constructor. It is given the
allocation status of unallocated.

6.2 Multiple allocations with source=

Multiple allocations are permitted in a single allocate statement with source=.

6.3 Copying the properties of an object in an allocate statement

In a Fortran 2003 allocate statement, if it is required to copy the bounds of an array, they
have to be specified explicitly, for example,

allocate (a(lbound(b,1):ubound(b,1)))

allocate (a(lbound(b,1):ubound(b,1)), source=b)

In Fortran 2008, the bounds may taken from an array given by mold= or source=:

allocate (a, mold=b) ! Bounds copied

allocate (a, source=b) ! Bounds and value copied

This feature is also available for copying deferred type parameters and for copying the type when
allocating a polymorphic variable.

6.4 Polymorphic assignment

Intrinsic assignment to an allocatable polymorphic variable is allowed. The variable must be
type compatible with the expression and of the same rank. If it is allocated but the dynamic
type differs from that of the expression, it is deallocated. If it is not allocated or becomes
deallocated, it is allocated with the dynamic type of the expression.

14 ISO/IEC JTC1/SC22/WG5 N1891

6.5 Accessing real and imaginary parts

The real and imaginary parts of a complex entity can be accessed independently with a component-
like syntax using the names re and im. For example,

complex impedance, x(n), y(n)

impedance%re = 1.0

x%im = 2.0*y%im

The new syntax allows the parts to be used as variables rather than only within expressions and
makes array sections such as x%im and y%im available.

6.6 Pointer functions

A reference to a pointer function is treated as a variable and is permitted in any variable-
definition context. For example, this function might calculate where to store values depending
on a key

function storage(key) result(loc)

integer, intent(in) :: key

real, pointer :: loc

loc=>...

end function

which would allow a value to be set thus:

storage(5)=0.5

6.7 Elemental dummy argument restrictions lifted

There are no longer any additional restrictions for elemental procedures on the appearance of
dummy arguments in specification expressions.

7 Input/Output

7.1 Finding a unit when opening a file

In an open statement, newunit= automatically selects a unit number that does not interfere
with other unit numbers selected by the program, including preconnected files. For example,

integer factor

open (newunit = factor, file = ’factor’, status = ’old’)

which assigns a suitable value to the integer factor.

ISO/IEC JTC1/SC22/WG5 N1891 15

7.2 g0 edit descriptor

The g0 edit descriptor specifies that the processor should automatically choose a suitable field
width. For real and complex data, it follows the rules of esw.dee format with the values of w,
d, and e chosen by the processor. For integers, it behaves as i0. For logicals, it behaves as l1.
For characters, it behaves as a.

7.3 Unlimited format item

A list of edit descriptors in parentheses containing one or more data edit descriptors may be
preceded by an asterisk, which has the effect of repeating the list indefinitely, that is, as if it
were replaced by a very large integer. For example,

write(10, ’("iarray =", *(i0, :, ","))’) iarray

produces a single record with a header and a comma separated list of integer values. Note that
this feature can be used with g0 format to process I/O lists with various types (or derived types)
present.

7.4 Recursive input/output

It is useful to be able to perform I/O in a subprogram invoked during the processing of an I/O
statement (e.g., for tracing and diagnostic purposes). This is now permitted for an external unit
that is distinct from that of an I/O statement that is in execution (that is, any in the current
call chain).

8 Execution control

8.1 The block construct

The block construct allows entities to be declared and given the scope of the block, for example,

block

integer :: i

real :: a(n)

do i = 1,n

a(i) = i

end do

:

end block

ensures that the do index i and the automatic array a are separate from variables with the same
names that are outside the block. Of course, the block construct must be properly nested with
other constructs.

16 ISO/IEC JTC1/SC22/WG5 N1891

8.2 Exit statement

In Fortran 2008, a named exit statement may be employed in almost any construct. This will
avoid the need for go to statements or extra tests for some algorithms that cannot be expressed
in Fortran 2003 without them. Here is an example using the new block construct (Section 8.1)

outer: block

do i = 1, num_in_set

if (x == a(i)) exit outer

end do

call r

end block outer

Here, no action is needed if x is equal to an element of a; otherwise, r is called.

The exceptional cases involve an exit statement that would cause a transfer of control out of
a do concurrent (Section 4.1) or critical construct (a coarray feature). In these cases, a
transfer out of the construct is inappropriate and is not permitted.

8.3 Stop code

The optional stop code on a stop statement is limited in Fortran 2003 to a string of one to
five digits or a character constant. This has been extended to any scalar constant expression of
type default integer or default character, available as ever ‘in a processor-dependent manner’.
In addition, it is recommended that

• it is made available by formatted output on the unit error unit of the intrinsic module
iso Fortran env and

• that if it is an integer and the processor supports command line execution (see Section
9.9), it is made available as the exit status value returned by execute command line.

9 Intrinsic procedures and modules

9.1 Bit processsing

9.1.1 Bit sequence comparison

Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or
all bits have been compared and found to be equal. If unequal bits are found, the sequence with
zero in the unequal position is considered to be less than the sequence with one in the unequal
position. When bit sequences of unequal length are compared, the shorter sequence is considered
to be extended by padding with zero bits on the left. The following elemental functions have
been added. i and j are each of type integer or a binary, octal, or hexadecimal constant.

ISO/IEC JTC1/SC22/WG5 N1891 17

bge (i,j) returns the default logical value true if and only if i is bitwise greater than or
equal to j.

bgt (i,j) returns the default logical value true if and only if i is bitwise greater than j.

ble (i,j) returns the default logical value true if and only if i is bitwise less than or equal
to j.

blt (i,j) returns the default logical value true if and only if i is bitwise less than j.

9.1.2 Combined shifting

The following elemental functions have been added for combined shifting. i and j are each of
type integer or a binary, octal, or hexadecimal constant. At least one must be integer. If
they are both integer, they must have the same kind. Let bsize be the bit size of this kind
of integer. The result is of type integer and of this kind. shift is of type integer with a value
in the range 0, 1, 2, . . . , bsize.

dshiftl (i,j,shift) returns the rightmost bsize-shift bits of i followed by the leftmost
shift bits of j.

dshiftr (i,j,shift) returns the rightmost shift bits of i followed by the leftmost bsize-shift
bits of j.

9.1.3 Counting bits

The following elemental functions have been added for counting bits. i is an integer and the
result is a default integer.

leadz(i) returns the number of leading zero bits in i.

popcnt(i) returns the number of one bits in i.

poppar(i) returns the value 1 if popcnt(i) is odd and the value 0 otherwise.

trailz(i) returns the number of trailing zero bits in i.

9.1.4 Masking bits

The following elemental functions have been added for masking bits.

maskl(i[,kind]) returns an integer whose leftmost i bits are 1 and the rest are zero.

maskr(i[,kind]) returns an integer whose rightmost i bits are 1 and the rest are zero.

i is an integer.

18 ISO/IEC JTC1/SC22/WG5 N1891

kind is a scalar integer constant expression.

The result is of type integer and kind kind if kind is present and of type default integer

otherwise.

9.1.5 Shifting bits

The following elemental functions have been added for shifting bits.

shifta(i,shift) has the effect of shifting the bits of i to the right by shift places and
replicating the leftmost bit shift times in the vacated positions.

shiftl(i,shift) has the effect of shifting the bits of i to the left by shift places and changing
the rightmost shift bits to zero. It is the same as ishft(i,shift).

shiftr(i,shift) has the effect of shifting the bits of i to the right by shift places and
changing the leftmost shift bits to zero. It is the same as ishft(i,-shift).

i is an integer.

shift is a nonnegative integer.

The result is of type integer with the same kind as i.

9.1.6 Merging bits

The following elemental function has been added for merging bits.

merge bits(i,j,mask) returns an integer that merges the bits of i and j under the control
of mask. One of i and j must be of type integer. If both are of type integer, they must
be of the same kind. One may be a binary, octal, or hexadecimal constant. mask is of type
integer and of the same kind as i or j, or is a binary, octal, or hexadecimal constant. A
bit of the result is the corresponding bit of i if the corresponding bit of mask is 1 and is
the corresponding bit of j otherwise.

9.1.7 Bit transformational functions

The following transformational functions have been added for bit operations.

iall(array,dim,[,mask]) or iall(array[,mask]) performs bitwise and operations.

iany(array,dim,[,mask]) or iany(array[,mask]) performs bitwise or operations.

iparity(array,dim,[,mask]) or iparity(array[,mask]) performs bitwise exclusive or op-
erations.

array is an integer array.

ISO/IEC JTC1/SC22/WG5 N1891 19

dim is an integer scalar.

mask conforms with array and is of type logical.

These functions are modelled on the transformational function sum, but use the operators of the
functions iand, ior, and ieor instead of +. The result has the type and kind of array and the
shape is determined from the shape of array and the value of dim or its absence, just as for sum.
The operators are applied to all the elements of array to yield a scalar or to all the elements of
each rank-one section that spans dimension dim to yield a result of rank reduced by one.

9.2 Storage size

storage size(a,[kind]) is an inquiry function that returns an integer of kind kind if kind is
present or of default kind otherwise. It returns the storage size in bits of a scalar of the
dynamic type and kind of a, which may be a scalar or an array of any type.

9.3 Optional argument radix added to selected real kind

An additional optional argument radix has been added to selected real kind at the end of
the argument list. It is an integer scalar and its presence results in the search being limited to
a particular radix.

9.4 Extensions to trigonometric and hyperbolic intrinsic functions

The intrinsic functions acos, asin, atan, cosh, sinh, tan, and tanh may have complex ar-
guments. The inverse functions acosh(x), asinh(x), and atanh(x) have been added. The
intrinsic function atan2 may be accessed by the name atan.

9.5 Bessel functions

The following elemental functions have been added

bessel j0 (x) returns the Bessel function of the first kind and order zero for a real value x.

bessel j1 (x) returns the Bessel function of the first kind and order one for a real value x.

bessel jn (n,x) returns the Bessel function of the first kind and order n for a real value x.
The argument n must be an integer with a nonnegative value.

bessel y0 (x) returns the Bessel function of the second kind and order zero for a real value x

that is positive.

bessel y1 (x) returns the Bessel function of the second kind and order one for a real value x

that is positive.

20 ISO/IEC JTC1/SC22/WG5 N1891

bessel yn (n,x) returns the Bessel function of the second kind and order n for real values x

that are positive. The argument n must be an integer with a nonnegative value.

In addition, the functions bessel jn and bessel yn are overloaded with these transformational
functions

bessel jn (n1,n2,x) returns a rank-one array of Bessel functions of the first kind and or-
ders n1, n1+1, . . . n2 for real values x. The arguments n1 and n2 must be integers with
nonnegative values.

bessel yn (n1,n2,x) returns a rank-one array of Bessel functions of the second kind and
orders n1, n1+1, . . . n2 for real values x. The arguments n1 and n2 must be integers with
nonnegative values.

9.6 Error and gamma functions

The following elemental functions have been added

erf (x) returns the error function for a real value x, that is, 2√
π

∫ x
0 exp(−t2)dt.

erfc (x) returns the complementary error function for a real value x, that is, 1-erf(x) =
2√
π

∫∞
x exp(−t2)dt.

erfc scaled (x) returns the exponentially-scaled complementary error function for a real value
x, that is, exp(x2) 2√

π

∫∞
x exp(−t2)dt.

gamma (x) returns the gamma function for a real value x, that is,
∫∞
0 tx−1 exp(−t)dt.

hypot (x,y) returns the Euclidean distance function
√
x2 + y2 for real values x and y, without

undue overflow or underflow.

log gamma (x) returns the logarithm of the absolute value of the gamma function for a real
value x that is not a negative integer or zero.

9.7 Euclidean vector norms

The following transformational function has been added.

norm2(x[,dim]) calculates Euclidean vector norms.

x is a real array.

dim is an integer scalar.

ISO/IEC JTC1/SC22/WG5 N1891 21

This function is modelled on the transformational function sum, but without the optional argu-

ment mask and replacing summation by calculation of the Euclidean vector norm
√∑

x2i . The
result has the type and kind of x and the shape is determined from the shape of x and the
value of dim or its absence, just as for sum. The operator is applied to all the elements of x to
yield a scalar or to the elements of each rank-one section that spans dimension dim to yield a
result of rank reduced by one. It is recommended that the result be reasonably accurate even if
computing some of the squares of the elements would result in overflow or underflow.

9.8 Parity

The following transformational function has been added.

parity(mask[,dim]) tests for the number of true values being odd.

mask is a logical array.

dim is an integer scalar.

This function is modelled on the transformational function all, replacing the test for all values
being true with the test for the number of true values being odd. The result has the type and
kind of mask and the shape is determined from the shape of mask and the value of dim or its
absence, just as for all. The operator is applied to all the elements of mask to yield a scalar
or to the elements of each rank-one section that spans dimension dim to yield a result of rank
reduced by one.

9.9 Execute command line

call execute command line(command[,wait,exitstat,cmdstat,cmdmsg]) starts execution of
another program if the processor supports command line execution.

command has intent in and is a scalar default character holding the command line to be
executed.

wait has intent in and is a scalar default logical. If present with the value false, and
the processor supports asynchronous execution of the command, the command is
executed asynchronously; otherwise it is executed synchronously.

exitstat has intent inout and is a scalar default integer. If the command is executed syn-
chronously, it is assigned the value of the processor-dependent exit status. Otherwise,
the value is unchanged.

cmdstat has intent out and is a scalar default integer. It is assigned the value -1 if the
processor does not support command line execution, a processor-dependent positive
value if an error condition occurs, or the value -2 if no error condition occurs but
wait is present with the value false and the processor does not support asynchronous
execution. Otherwise it is assigned the value 0.

22 ISO/IEC JTC1/SC22/WG5 N1891

cmdmsg has intent inout and is a scalar default character. If an error condition occurs, it
is assigned a processor-dependent explanatory message. Otherwise, it is unchanged.

When the command is executed synchronously, the subroutine returns after the command line
has completed execution. Otherwise, it returns without waiting. If an error condition occurs
and cmdstat is not present, error termination of execution is initiated.

9.10 Optional argument back added to maxloc and minloc

The intrinsics maxloc and minloc have had an additional optional argument back added at the
end of the argument list. The effect of its presence with the value true is that if there is more
than one element that satisfies the condition, the last in array element order is taken instead of
the first.

9.11 Find location in an array

The following transformational function has been added

findloc(array,value[,mask,kind,back]) or

findloc(array,value,dim[,mask,kind,back]) finds the location in array of an element
with value value.

array is an array of intrinsic type.

value is a scalar of a type that may be used for intrinsic comparisons.

dim is a scalar integer.

mask conforms with array and is of type logical.

kind is a scalar constant expression.

back is a scalar logical.

This function is modelled on the transformational function maxloc, replacing the search for a
maximum value with a search for the value value. The result has the type and kind of array
and the shape is determined from the shape of mask and the value of dim or its absence, just
as for maxloc. The search is applied to all the elements of array to yield a scalar or to the
elements of each rank-one section that spans dimension dim to yield a result of rank reduced by
one.

9.12 String comparison

The string comparison functions lge, lgt, lle, and llt are permitted to have arguments of
ASCII kind as well as default character kind.

ISO/IEC JTC1/SC22/WG5 N1891 23

9.13 Constants

The intrinsic module iso Fortran env contains these new constants:

character kinds is a default integer array holding the kind values supported by the processor
for variables of type character. Its size equals the number of kinds supported.

int8, int16, int32, and int64 are default integer scalars holding the kind values for integers
of storage size 8, 16, 32, and 64 bits. If there is no such type, the value is -2 if there is a
type of larger storage size or -1 otherwise.

integer kinds is a default integer array holding the kind values supported by the processor
for variables of type integer. Its size equals the number of kinds supported.

iostat inquire internal unit is a default integer scalar holding the value returned in an
iostat= specifier in an inquire statement if the file unit number identifies an internal
unit (which can happen only during user-defined derived-type I/O).

logical kinds is a default integer array holding the kind values supported by the processor
for variables of type logical. Its size equals the number of kinds supported.

real kinds is a default integer array holding the kind values supported by the processor for
variables of type real. Its size equals the number of kinds supported.

real32, real64, and real128 are default integer scalars holding the kind values for reals of
storage size 32, 64, and 128 bits. If there is no such type, the value is -2 if there is a type
of larger storage size or -1 otherwise.

9.14 Compiler information

The intrinsic module iso Fortran env contains these functions:

compiler options is an inquiry function that returns a default character scalar that details
the options that the compiler was given.

compiler version is an inquiry function that returns a default character scalar that details
the name and version of the compiler used.

9.15 Function for C sizeof

The intrinsic module iso C binding contains this function:

C sizeof(x) is an inquiry function that returns an integer of kind C size t. If x is scalar,
the result is the value that the companion processor returns as the result of applying
the C sizeof operator to an object of a type that interoperates with the type and type
parameters of x. If x is an array, it is the result for an element multiplied by the number
of elements.

24 ISO/IEC JTC1/SC22/WG5 N1891

9.16 Additional optional argument for ieee selected real kind

In the intrinsic module ieee arithmetic, an additional optional argument radix has been
added to ieee selected real kind at the end of the argument list. It is an integer scalar and
its presence results in the search being limited to a particular radix.

10 Programs and procedures

10.1 Save attribute for module and submodule data

A variable, common block, or procedure pointer that is declared in a module or submodule
automatically has the save attribute.

10.2 Empty contains part

Any contains section is permitted to be empty.

10.3 Form of the end statement for an internal or module procedure

The keyword function or subroutine is not required to appear in an end statement for an
internal or module procedure.

10.4 Internal procedure as an actual argument or pointer target

An internal procedure may be passed as an actual argument or be the target of a procedure
pointer, which permits it to be invoked from outside of its host. This will be very convenient
for users of library codes because the internal procedure may have access to any data accessible
in the host. We illustrate this with a procedure to calculate

∫ b
a f(x)dx with the interface

interface

real function integrate(f, a, b) result(integral)

interface

real function f(x) ! Integrand

real, value :: x

end function f

end interface

real, intent(in) :: a, b ! Bounds

end function integrate

end interface

Here it is being used in a function to calculate
∫ b
a x

ndx:

ISO/IEC JTC1/SC22/WG5 N1891 25

real function my_integration(n, a, b) result(integral)

! Integrate f(x)=x**n over [a,b]

integer, intent(in) :: n

real, intent(in) :: a, b

integral = integrate(my_f, a, b)

contains

real function my_f(x) ! Integrand

real, value :: x

my_f = x**n ! n is taken from the host.

end function my_f

end function my_integration

10.5 Null pointer or unallocated allocatable as an absent dummy argument

A null pointer or unallocated allocatable that corresponds to an optional non-allocatable non-
pointer dummy argument is interpreted as an absent argument.

10.6 Non-pointer actual for pointer dummy argument

A pointer dummy argument with intent in may be argument associated with a non-pointer
actual argument with the target attribute. During the execution of the procedure it is pointer
associated with the actual argument.

10.7 Generic resolution by pointer/allocatable or data/procedure

A pair of specific procedures in a generic interface are permitted to be distinguishable by virtue
of a pointer argument without intent in of one corresponding to an allocatable argument of the
other or a data argument of one corresponding to a procedure argument of the other.

10.8 Elemental procedures that are not pure

An elemental procedure is not required to be pure. This must be explicitly declared with the
prefix impure and the effect is that the procedure is called for corresponding array elements in
array element order. For example, the module in Figure 2 calculates pseudo-random numbers,
based on a seed that is an integer array of size 4. If random is called for an array, the scalar
subroutine is called repeatedly, updating the seed each time.

26 ISO/IEC JTC1/SC22/WG5 N1891

Figure 2: A module to calculate pseudo-random numbers.

module PRNG

integer, save :: seed(4)

contains

impure elemental subroutine random (x)

real, intent(out) :: x

... ! Code that updates the seed and

... ! calculates a pseudo-random value x

end subroutine random

end module PRNG

10.9 Entry statement becomes obsolescent

The entry statement becomes obsolescent. A procedure with entry points may be replaced by
a module with a separate module procedure for each entry and shared code in a private module
procedure.

11 Source form

11.1 Semicolon at line start

The restriction of not permitting a line to start with a semicolon has been removed.

12 Acknowledgements

I would like to express thanks to Malcolm Cohen, Aleksandar Donev, Nick Gould, Jim Giles, Alla
Gorelik, Jonathan Hogg, Erik Kruyt, Bill Long, Steve Morgan, Dan Nagle, Jane Sleightholme,
Van Snyder, and Stan Whitlock for suggesting improvements.

13 References

ISO/IEC (2004). ISO/IEC 1539-1:2004(E) Information technology - Programming languages
- Fortran - Part 1: Base language. ISO, Geneva.

ISO/IEC (2005). ISO/IEC TR 19767 Information technology - Programming languages -
Fortran - Enhanced Module Facilities. ISO, Geneva.

ISO/IEC (2010). ISO/IEC 1539-1:2010(E) Information technology - Programming languages
- Fortran - Part 1: Base language. ISO, Geneva.

ISO/IEC JTC1/SC22/WG5 N1891 27

ISO/IEC (2012). ISO/IEC TS 29113 Information technology - Further interoperability of
Fortran with C. ISO, Geneva.

Metcalf, Michael, Reid, John, and Cohen, Malcolm (2011). Modern Fortran explained. Oxford
University Press.

Reid (2010). ISO/IEC JTC1/SC22/WG5 N1824. Coarrays in the next Fortran Standard,
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

